Effects of Quench Rate, NO, and Quartz Surface Area on Gas Phase Oxidation of Mercury by Bromine

نویسندگان

  • Geoffrey D. Silcox
  • JoAnn S. Lighty
چکیده

Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. Injection of bromine compounds or brominated sorbents have been shown to affect mercury speciation and removal in coal-fired power plants. This study examines how bromine species affect mercury oxidation in the gas-phase. Experiments were conducted in a bench-scale, laminar, methane fired (300 W), quartz-lined reactor in which gas composition (Br2, NOx), quench rate, and quartz surface area were varied. Speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Oxidation levels ranged from 13% to 80% with a quench rate of 450 K/s and bromine concentrations ranging from 3.5 to 41 ppmv equivalent HBr. A lower quench rate (220 K/s) increased oxidation by about one third. Most of the experiments were conducted with 30 ppm NO (dry). Mercury oxidation was unaffected by the presence of 500 ppmv NO. The surface area was increased by inserting a bundle of thin-walled quartz tubes. The insert decreases the reactor residence time by about 5 %. Tripling the interior, quartz surface area of the reactor from 1000 cm to 3000 cm did not appreciably affect the extent of oxidation. The experimental results were compared to detailed kinetic modeling predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants.

Bromine gas was evaluated for converting elemental mercury (Hg0) to oxidized mercury, a form that can readily be captured by the existing air pollution control device. The gas-phase oxidation rates of Hg0 by Br2 decreased with increasing temperatures. SO2, CO, HCl, and H2O had insignificant effect, while NO exhibited a reverse course of effect on the Hg0 oxidation: promotion at low NO concentra...

متن کامل

Assessment of effective factors on bacterial oxidation of ferrous iron by focusing on sweetening natural gas

In this study, the effects of some factors on bacterial growth and ferrous oxidation rates were investigated by Acidithiobacillus ferrooxidan in 250 ml shake flasks. One factor at a time (OFAT) design approach was used for preliminary evaluation of various factors affecting the process, such as pH, initial ferrous and elemental sulfur concentrations, shaker agitation rate, and liquid to flask v...

متن کامل

Selective Catalytic Reduction of CuO/SiO2 Nano-composites towards NO Reduction in Gas-phase

The xerogel samples were prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS) by the sol-gel method. In this investigation, a new molar ratio of H2O/TEOS was determined to be 11.7. Also, the necessary amounts of tri-hydrated copper nitrate and penta-hydrated copper sulfate were added to the solution in such a manner that the concentration of the copper oxide in final solut...

متن کامل

Gas Phase Mercury Oxidation by Halogens (Cl, Br, I) in Combustion Effluents: Influence of Operating Conditions

Control of mercury emissions is one of the major challenges faced by power generation in coal burning and incineration plants, due to the increasing emission control regulations in the electricity generating sector. This study focuses on the elimination of mercury from the combustion flue gases via the oxidation of elemental mercury (non-soluble) into its oxidized form (soluble) by the addition...

متن کامل

Characterization of Sol-Gel Derived CuO@SiO2 Nano Catalysts towards Gas Phase Reactions

One distinct concentration of copper ions was embedded into the silica matrix to xerogel form using copper source Cu(NO3)2∙3H2O. The xerogel samples were prepared with using hydrolysis and condensation reactions of TetraEthyl Ortho-Silicate (TEOS) by the sol-gel method. In this investigation, new molar ratio of H2</su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008